These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interactions of PIN and PGP auxin transport mechanisms.
    Author: Bandyopadhyay A, Blakeslee JJ, Lee OR, Mravec J, Sauer M, Titapiwatanakun B, Makam SN, Bouchard R, Geisler M, Martinoia E, Friml J, Peer WA, Murphy AS.
    Journal: Biochem Soc Trans; 2007 Feb; 35(Pt 1):137-41. PubMed ID: 17233620.
    Abstract:
    Polarized transport of the plant hormone auxin influences multiple growth processes in plants and is regulated by plasma-membrane-localized efflux and uptake carriers. The PGP (P-glycoprotein) ABC transporters (ATP-binding-cassette transporters), PIN (pin-formed) subfamily of major facilitator proteins and members of AUX/LAX families have been shown to independently transport auxin both in planta and in heterologous systems. However, PIN- and PGP-mediated transport in heterologous systems exhibits decreased substrate specificity and inhibitor-sensitivity compared with what is seen in plants and plant cells. To determine whether PIN-PGP interactions enhance transport specificity, we analysed interactions of the representative auxin-transporting PGPs with PIN1 and AUX1 in planta and in heterologous systems. Here, we provide evidence that PINs and PGPs interact and function both independently and co-ordinately to control polar auxin transport and impart transport specificity and directionality. These interactions take place in protein complexes stabilized by PGPs in detergent-resistant microdomains.
    [Abstract] [Full Text] [Related] [New Search]