These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enzymatic interesterification of tripalmitin with vegetable oil blends for formulation of caprine milk infant formula analogs. Author: Maduko CO, Akoh CC, Park YW. Journal: J Dairy Sci; 2007 Feb; 90(2):594-601. PubMed ID: 17235135. Abstract: The structure of triacylglycerols in vegetable oil blends was enzymatically modified, and the blends were incorporated into skim caprine milk to produce goat milk-based infant formula analogs, homologous to human milk. A modified lipid containing palmitic, oleic, and linoleic acids, resembling the composition of human milk fat, was synthesized by enzymatic interesterification reactions between tripalmitin and a vegetable oil blend containing a 2.5:1.1:0.8 ratio of coconut, safflower, and soybean oils. A commercial sn-1,3-specific lipase obtained from Rhyzomucor miehei, Lipozyme RM IM, was used as the biocatalyst. The effects of substrate molar ratio and reaction time on the incorporation of palmitic, oleic, and linoleic acids at the sn-2 position of the triacylglycerols were investigated. The fatty acid composition and sn-2 position of the experimental formulas were analyzed using gas chromatography. Results showed that the highest incorporation of palmitic acid was obtained at 12 h of incubation at 55 degrees C with a substrate molar ratio of 1:0.4 of tripalmitin to vegetable oil blend. However, the modified milk interesterified for 12 h at a 1:1 molar ratio had a greater resemblance to human milk compared with the other formulas. The level of oleic acid incorporation at the sn-2 position increased with the molar ratio of tripalmitin to vegetable oil blend. It was concluded that, unlike the original goat milk and other formulas, the formulated caprine milk with a molar ratio of 1:1 and a 12-h incubation was similar to the fatty acid composition of human milk.[Abstract] [Full Text] [Related] [New Search]