These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Biochemical and structural features of a novel cyclodextrinase from cow rumen metagenome.
    Author: Ferrer M, Beloqui A, Golyshina OV, Plou FJ, Neef A, Chernikova TN, Fernández-Arrojo L, Ghazi I, Ballesteros A, Elborough K, Timmis KN, Golyshin PN.
    Journal: Biotechnol J; 2007 Feb; 2(2):207-13. PubMed ID: 17238236.
    Abstract:
    A novel enzyme, RA.04, belonging to the alpha-amylase family was obtained after expression of metagenomic DNA from rumen fluid (Ferrer et al.: Environ. Microbiol. 2005, 7, 1996-2010). The purified RA.04 has a tetrameric structure (280 kDa) and exhibited maximum activity (5000 U/mg protein) at 70 degrees C and was active within an unusually broad pH range from 5.5 to 9.0. It maintained 80% activity at pH 5.0 and 9.5 and 75 degrees C. The enzyme hydrolyzed alpha-D-(1,4) bonds 13-fold faster than alpha-D-(1,6) bonds to yield maltose and glucose as the main products, and it exhibited transglycosylation activity. Its preferred substrates, in the descending order, were maltooligosaccharides (C3-C7), cyclomaltoheptaose (beta-CD), cyclomaltohexaose (alpha-CD), cyclomaltooctaose (gamma-CD), soluble starch, amylose, pullulan and amylopectin. The biochemical properties and amino acid sequence alignments suggested that this enzyme is a cyclomaltodextrinase. However, despite the similarity in the catalytic module (with Glu359 and Asp331 being the catalytic nucleophile and substrate-binding residues, respectively), the enzyme bears a shorter N-terminal domain that may keep the active site more accessible for both starch and pullulan, compared to the other known CDases. Moreover, RA.04 lacks the well-conserved N-terminal Trp responsible for the substrate preference typical of CDases/MAases/PNases, suggesting a new residue is implicated in the preference for cyclic maltooligosaccharides. This study has demonstrated the usefulness of a metagenomic approach to gain novel debranching enzymes, important for the bread/food industries, from microbial environments with a high rate of plant polymer turnover, exemplified by the cow rumen.
    [Abstract] [Full Text] [Related] [New Search]