These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nitrosative stress in plants.
    Author: Valderrama R, Corpas FJ, Carreras A, Fernández-Ocaña A, Chaki M, Luque F, Gómez-Rodríguez MV, Colmenero-Varea P, Del Río LA, Barroso JB.
    Journal: FEBS Lett; 2007 Feb 06; 581(3):453-61. PubMed ID: 17240373.
    Abstract:
    Nitrosative stress has become a usual term in the physiology of nitric oxide in mammalian systems. However, in plants there is much less information on this type of stress. Using olive leaves as experimental model, the effect of salinity on the potential induction of nitrosative stress was studied. The enzymatic l-arginine-dependent production of nitric oxide (NOS activity) was measured by ozone chemiluminiscence. The specific activity of NOS in olive leaves was 0.280nmol NOmg(-1) proteinmin(-1), and was dependent on l-arginine, NADPH and calcium. Salt stress (200mM NaCl) caused an increase of the l-arginine-dependent production of nitric oxide (NO), total S-nitrosothiols (RSNO) and number of proteins that underwent tyrosine nitration. Confocal laser scanning microscopy analysis using either specific fluorescent probes for NO and RSNO or antibodies to S-nitrosoglutathione and 3-nitrotyrosine, showed also a general increase of these reactive nitrogen species (RNS) mainly in the vascular tissue. Taken together, these findings show that in olive leaves salinity induces nitrosative stress, and vascular tissues could play an important role in the redistribution of NO-derived molecules during nitrosative stress.
    [Abstract] [Full Text] [Related] [New Search]