These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Degradation of phenol by Acinetobacter strain isolated from aerobic granules. Author: Adav SS, Chen MY, Lee DJ, Ren NQ. Journal: Chemosphere; 2007 Apr; 67(8):1566-72. PubMed ID: 17240418. Abstract: Aerobic granules effectively degrade phenol at high concentrations from which no Acinetobacter species, that can effectively degrade high concentrations of phenol, have ever been isolated from aerobic granules. The phenol-fed aerobic granule studied was made by merging several smaller granules, each with a core of proteins and nucleic acids surrounded by an outer layer enriched with polysaccharides. In the present study, a strain of Acinetobacter sp. was isolated from the phenol-fed aerobic granules and was identified using DNA sequencing. The fluorescent in situ hybridisation combined with the confocal laser scanning microscope test revealed that the isolated Acinetobacter strain was mainly distributed in the core regime of granule. Batch tests revealed that the suspended Acinetobacter strain could effectively degrade phenol at an initial phenol concentration of up to 1000 mg l(-1) with no cell growth taking place at a phenol concentration of 1500 mg l(-1). The Haldane model describes the inhibitory kinetics of the phenol degradation data. The suspended Acinetobacter strain had a propensity to attach to the surface of sterilized polyurethane foam at a concentration of 12.3mg dry cells mg(-1) dry foam. The immobilized cells could not only degrade phenol at a rate similar to the suspended cells at phenol concentration of 500 mg l(-1), but also effectively degraded phenol at 1500 mg l(-1). The polysaccharides outer layer protected the Acinetobacter strain from phenol's toxicity; while the strain may also contribute to bioaggregation of the granule for its high propensity to attach to solid surface.[Abstract] [Full Text] [Related] [New Search]