These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Three-phase CFD analytical modeling of blood flow. Author: Jung J, Hassanein A. Journal: Med Eng Phys; 2008 Jan; 30(1):91-103. PubMed ID: 17244522. Abstract: The behavior of blood cells in disturbed flow regions of arteries has significant relevance for understanding atherogenesis. However, their distribution with red blood cells (RBCs) and leukocytes is not so well studied and understood. Our three-phase computational fluid dynamics approach including plasma, RBCs, and leukocytes was used to numerically simulate the local hemodynamics in such a flow regime. This model has tracked the wall shear stress (WSS), phase distributions, and flow patterns for each phase in a concentrated suspension shear flow of blood. Unlike other computational approaches, this approach does not require dispersion coefficients as an input. The non-Newtonian viscosity model was applied to a wide physiological range of hematocrits, including low shear rates. The migration and segregation of blood cells in disturbed flow regions were computed, and the results compared favorably with available experimental data. The predicted higher leukocyte concentration was correlated with relatively low WSS near the stenosis having a high WSS. This behavior was attributed to flow-dependent interactions of the leukocytes with RBCs in pulsatile flow. This three-phase hemodynamic analysis may have application to vulnerable plaque formation in arteries with in vivo complex flow conditions.[Abstract] [Full Text] [Related] [New Search]