These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Effect of vitamin E on transcription in isolated nuclei and rat liver chromatin in normal status and in E-hypovitaminosis].
    Author: Petrova GV, Kapralov AA, Donchenko GV.
    Journal: Biokhimiia; 1991 Nov; 56(11):2052-9. PubMed ID: 1725269.
    Abstract:
    The effect of alpha-tocopherol on the RNA-polymerase activity in isolated rat nuclei and chromatin from normal and E-deficient rats and the possible role of tocopherol-binding proteins in this process were studied. Some differences in the RNA-polymerase activities of the nuclei were found; however, in vitro added alpha-tocopherol had no effect on the level of the label incorporation into RNA. No effect of alpha-tocopherol on this process was observed after addition of cytosol either. Analysis of chromatins from normal and E-deficient rats revealed no differences in their RNA-polymerase activities. In vitro added alpha-tocopherol increased the RNA-polymerase activity of normal (but not of vitamin E-deficient) rats. Some differences in the RNA-polymerase activities were noted after addition to the incubation medium of the Triton X-100-solubilized nuclear fraction specifically binding alpha-tocopherol. This effect was enhanced in the presence of exogenous alpha-tocopherol. The susceptibility of chromatin from normal and E-deficient rats to DNAse I hydrolysis was also found to be different. It was concluded that vitamin E can influence the RNA-polymerase activity of the nuclei and chromatin as well as the chromatin structure and that alpha-tocopherol-binding proteins are necessary for the vitamin E effect on the RNA-polymerase activity to be manifested.
    [Abstract] [Full Text] [Related] [New Search]