These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Perfluorinated chemicals in the arctic atmosphere. Author: Shoeib M, Harner T, Vlahos P. Journal: Environ Sci Technol; 2006 Dec 15; 40(24):7577-83. PubMed ID: 17256497. Abstract: Twenty high-volume air samples were collected during a crossing of the North Atlantic and Canadian Archipelago in July 2005 to investigate air concentrations of fluorotelomer alcohols (FTOHs) and perfluoalkyl sulfonamido ethanols (PFASs). These commercial chemicals are widely used as surface treatments and are believed to be precursors for perfluorocarboxylic acids (PFCAs) and perfluorooctane sulfonate (PFOS) that accumulate in humans and biota, including those from remote arctic regions. The highest concentrations (sum of gas- and particle-phase) of FTOHs were for 8:2 FTOH (perfluoroctyl ethanol) (5.8-26 pg/m(3)), followed by 10:2 FTOH (perfluorodecyl ethanol) (1.9-17 pg/ m(3)) and 6:2 FTOH (perfluorohexyl ethanol) [BDL (below detection limit) to 6.0 pg/m(3)]. For the PFASs, MeFOSE (N-methyl perfluorooctane sulfonamido ethanol) was dominant and ranged from 2.6 to 31 pg/m(3); EtFOSE (N-ethyl perfluorooctane sulfonamido ethanol) ranged from BDL to 8.9 pg/m(3) and MeFOSEA (N-methyl perfluorooctane sulfonamide ethylacrylate) was BDL in all samples. Air parcel back-trajectories showed that the sampled air was largely representative of the arctic air mass. Air concentrations of target compounds were of the same order of magnitude as reported air concentrations in source regions. For instance, the mean 8:2 FTOH concentration was only a factor of about 3 lower than for three urban samples that were collected in Toronto for comparison. These findings confirm model results that predictthe efficient, long-range atmospheric transport and widespread distribution of FTOHs and related compounds in the arctic region. Mean particulate percentages for FTOHs and PFASs in the cruise samples (mean temperature, 5+/-4 degrees C) were BDL for 6:2 FTOH, 23% for 8:2 FTOH, 15% for 10:2 FTOH, 32% for MeFOSE, and 22% for EtFOSE. Further, the partitioning to particles for MeFOSE and EtFOSE was significantly correlated with inverse absolute temperature, whereas the FTOHs did not show this trend. The Toronto samples (mean temperature, -1+/-1 degree C) showed similar particulate percentages for MeFOSE and EtFOSE; however, the FTOHs were substantially less particle-bound. Although the mechanism for this partitioning is not understood, the results do indicate the need to better account for particle phase transport when modeling the atmospheric fate of these chemicals.[Abstract] [Full Text] [Related] [New Search]