These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nonparametric confidence intervals for Tmax in sequence-stratified crossover studies.
    Author: Willavize SA, Morgenthien EA.
    Journal: Pharm Stat; 2008; 7(1):9-19. PubMed ID: 17256803.
    Abstract:
    Tmax is the time associated with the maximum serum or plasma drug concentration achieved following a dose. While Tmax is continuous in theory, it is usually discrete in practice because it is equated to a nominal sampling time in the noncompartmental pharmacokinetics approach. For a 2-treatment crossover design, a Hodges-Lehmann method exists for a confidence interval on treatment differences. For appropriately designed crossover studies with more than two treatments, a new median-scaling method is proposed to obtain estimates and confidence intervals for treatment effects. A simulation study was done comparing this new method with two previously described rank-based nonparametric methods, a stratified ranks method and a signed ranks method due to Ohrvik. The Normal theory, a nonparametric confidence interval approach without adjustment for periods, and a nonparametric bootstrap method were also compared. Results show that less dense sampling and period effects cause increases in confidence interval length. The Normal theory method can be liberal (i.e. less than nominal coverage) if there is a true treatment effect. The nonparametric methods tend to be conservative with regard to coverage probability and among them the median-scaling method is least conservative and has shortest confidence intervals. The stratified ranks method was the most conservative and had very long confidence intervals. The bootstrap method was generally less conservative than the median-scaling method, but it tended to have longer confidence intervals. Overall, the median-scaling method had the best combination of coverage and confidence interval length. All methods performed adequately with respect to bias.
    [Abstract] [Full Text] [Related] [New Search]