These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The use of in vitro bioassays to quantify endocrine disrupting chemicals in municipal wastewater treatment plant effluents. Author: Nelson J, Bishay F, van Roodselaar A, Ikonomou M, Law FC. Journal: Sci Total Environ; 2007 Mar 01; 374(1):80-90. PubMed ID: 17257656. Abstract: In vitro bioassays are widely used to detect and quantify endocrine disrupting chemicals (EDCs) in the influents and effluents of municipal wastewater treatment plants (WWTP). These assays have sometimes led to false positive or negative results, partly due to the low EDC concentrations in the samples. The objectives of the present study were: (a) to compare the estrogen screen (E-Screen) and the yeast estrogen screen (YES) bioassays using the 17beta-estradiol (E2) or its equivalence and (b) to investigate if a combination of the E-Screen and YES assays can be used to improve the accuracy of EDC detection and quantification. The E-Screen bioassay was conducted with the MCF-7 (BOS) human breast cancer cell line while the YES bioassay employed two different types of recombinant yeast. The influent and effluent samples collected from the five WWTPs operated by the Greater Vancouver Regional District (GVRD) were analyzed by both the E-Screen and the YES bioassays. Since the results of the E-Screen and YES bioassays varied by up to 4-fold on the same split sample of a nominal E2 concentration, the mean value of the E-screen and YES bioassays was used to represent the EDC activity of a given WWTP sample. Results of these studies showed that the E2 equivalent concentration in each WWTP sample was consistently higher than 1 ng/L, a concentration that may potentially cause endocrine disruption in different aquatic species. The composition of selected EDCs in a subset of effluent samples was examined using a gas chromatograph-high resolution mass spectrometer (GC-HRMS). EDC composition in 10 WWTP samples correlated with the mean endocrine disrupting activities of the E-Screen and YES bioassays. Results also indicated that secondary treatment plants are comparable to the primary treatment plants in removing EDCs from the final effluents.[Abstract] [Full Text] [Related] [New Search]