These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation. Author: Rowlands AS, Lim SA, Martin D, Cooper-White JJ. Journal: Biomaterials; 2007 Apr; 28(12):2109-21. PubMed ID: 17258315. Abstract: In this study, we present a novel composite scaffold fabricated using a thermally induced phase separation (TIPS) process from poly(lactic-co-glycolic) (PLGA) and biomedical polyurethane (PU). This processing method has been tuned to allow intimate (molecular) mixing of these two very different polymers, giving rise to a unique morphology that can be manipulated by controlling the phase separation behaviour of an initially homogenous polymer solution. Pure PLGA scaffolds possessed a smooth, directional fibrous sheet-like structure with pore sizes of 0.1-200mum, a porous Young's modulus of 93.5kPa and were relatively brittle to touch. Pure PU scaffolds had an isotropic emulsion-like structure, a porous Young's modulus of 15.7kPa and were much more elastic than the PLGA scaffolds. The composite PLGA/PU scaffold exhibits advantageous morphological, mechanical and cell adhesion and growth supporting properties, when compared with scaffolds fabricated from PLGA or PU alone. This novel method provides a mechanism for the formation of tailored bioactive scaffolds from nominally incompatible polymers, representing a significant step forward in scaffold processing for tissue-engineering applications.[Abstract] [Full Text] [Related] [New Search]