These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Spin-locking and recoupling of homonuclear dipolar interaction between spin-3/2 nuclei under magic-angle sample spinning. Author: Mali G. Journal: J Magn Reson; 2007 Apr; 185(2):318-25. PubMed ID: 17258483. Abstract: Numerical simulations and experiments were used to examine the possibility of employing strong spin-lock fields for recoupling of homonuclear dipolar interactions between spin-3/2 quadrupolar nuclei and to compare it to the rotary-resonance recoupling at weak spin-lock fields. It was shown that strong spin-lock pulses under MAS conditions can lead to recoupling, provided that the electric-field gradient principal axes systems of the coupled nuclei are aligned and that their quadrupolar coupling constants are approximately the same. The phenomenon is based on the fact that strong spin-lock pulses induce adiabatic transfer of magnetization between the central-transition coherence and the triple-quantum coherence with equal periodicity as is the periodicity of the time-dependent dipolar coupling. Because of the synchronous variation of the state of the spin system and of the dipolar interaction, the effect of the latter on the central-transition coherence and on the triple-quantum coherence is not averaged out by sample rotation. The approach is, however, very sensitive to the relative orientation of the electric-field gradient principal axes systems and therefore less robust than the approach based on weak spin-lock pulses that satisfy rotary-resonance condition.[Abstract] [Full Text] [Related] [New Search]