These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Modifications of Phleum pratense grass pollen allergens following artificial exposure to gaseous air pollutants (O(3), NO(2), SO(2)). Author: Rogerieux F, Godfrin D, Sénéchal H, Motta AC, Marlière M, Peltre G, Lacroix G. Journal: Int Arch Allergy Immunol; 2007; 143(2):127-34. PubMed ID: 17259730. Abstract: BACKGROUND: Air pollution is frequently proposed as a potential cause of the increased incidence of allergy in industrialised countries. Our objective was to investigate the impact of the major gaseous air pollutants on grass pollen allergens. METHODS: Timothy grass pollen was exposed to ozone (O(3)), nitrogen dioxide (NO(2)) and sulphur dioxide (SO(2)) alone or in combination. Allergen contents were analysed by 2-dimensional immunoblot using grass pollen-sensitive patient sera. RESULTS: For O(3)-treated pollen, immunoblotting showed an acidification of allergens Phl p 1b, Phl p 4, Phl p 5 and Phl p 6 and an IgE recognition decrease in Phl p 1, Phl p 2, Phl p 6 and Phl p 13. NO(2) exposure induced a decrease in Phl p 2, Phl p 5b and Phl p 6 recognition, and SO(2) treatment induced a decrease in Phl p 2, Phl p 6 and Phl p 13 recognition. Moreover, samples treated with a mix of NO(2)/O(3) or NO(2)/SO(2) showed a higher decrease in allergen content, compared with samples treated with only one pollutant. The O(3) acidification was also observed with the NO(2)/O(3) mix. CONCLUSION: Exposure of pollen to gaseous pollutants induced a decrease in allergen detection in pollen extracts. This decrease could be due to a mechanical loss of allergens from the altered pollen grains and/or post-translational modifications affecting allergen recognition by IgE.[Abstract] [Full Text] [Related] [New Search]