These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Cytotoxicity and mechanism of 23-O-acetylcimigenol-3-O-beta-D-xylopyranoside on HepG2 cells].
    Author: Tian Z, Si JY, Chen SB, Yang MS, Xiao PG, Wu EX.
    Journal: Zhongguo Zhong Yao Za Zhi; 2006 Nov; 31(21):1818-21. PubMed ID: 17260803.
    Abstract:
    OBJECTIVE: To elucidate the cytotoxicity and mechanism of 23-O-acetylcimigenol-3-O-beta-D-xylopyranoside isolated from C. dahurica on HepG2 cells and to find the leading compound for new drug development. METHOD: MTT, AO/EB staining observation, flow cytometry and western blot methods were used to study the cytotoxicity, morphological changes, cell cycle distribution and protein expression profile of 23-O-acetylcimigenol-3-O-beta-D-xylopyranoside on HepG2 cells. RESULT: 23-O-acetylcimigenol-3-O-beta-D-xylopyranoside could inhibit the proliferation of HepG2 cells with IC50 at 16 micromol x L(-1), and could also induce apoptosis and G2-M cell cycle arrest. Further study demonstrated that the compound could cleavage PARP, regulate protein expression of bcl-2 family and decrease the expression of cdc 2 and cyclin B. CONCLUSION: 23-O-acetylcimigenol-3-O-beta-D-xylopyranoside exerts its cytotoxicity on HepG2 cells via apoptosis and G2-M arrest. In addition, caspases family activation, regulation of protein expression of bcl-2 family and down regulation of cdc 2 and cyclin B were involved in apoptosis and G2-M arrest induced by it.
    [Abstract] [Full Text] [Related] [New Search]