These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Separate sites for the dantrolene-induced inhibition of contracture of the rat diaphragm preparation due to depolarization or to caffeine. Author: Røed A. Journal: Eur J Pharmacol; 1991 Dec 10; 209(1-2):33-8. PubMed ID: 1726087. Abstract: Addition of dantrolene 8.5 x 10(-5) M caused a mono-exponential decay of the depolarization contractures caused by inhibition of the sarcolemmal Na,K-ATPase with propranolol 1 mM or by depolarization of the sarcolemma and T tubular membranes with KCl 100 mM. The half-times of the inhibitory effects were 6 s for the propranolol contracture and 11 s for the KCl contracture. The inhibition of both contractures was complete. Inhibition of the caffeine (10 mM) contracture was bi-exponential with half-times of 45 s and 9.5 min. Inhibition was incomplete; 29.6 +/- 5.0% of the contracture tension could not be inhibited. The inhibition of twitch contractions was similar to that of the caffeine contracture, with half-times of 48 s and 9.1 min, and 20.6 +/- 1.2% of the initial twitch tension could not be inhibited. The contracture tensions induced by release of Ca from the mitochondria with dicumarol, and by actin-myosin binding with the sulfhydryl inhibitor, N-ethyl-maleimide, could not be inhibited by dantrolene. The present results indicate that dantrolene inhibits depolarization signals from the sarcolemma and the T tubular membranes, in addition to inhibition of the coupling between the T tubules and the sarcoplasmic reticulum, and of the release of Ca from the sarcoplasmic reticulum. All these effects of dantrolene may contribute to its therapeutic effect in malignant hyperthermia.[Abstract] [Full Text] [Related] [New Search]