These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Teratogenicity of Ni2+ in Xenopus laevis, assayed by the FETAX procedure.
    Author: Hopfer SM, Plowman MC, Sweeney KR, Bantle JA, Sunderman FW.
    Journal: Biol Trace Elem Res; 1991 Jun; 29(3):203-16. PubMed ID: 1726404.
    Abstract:
    The teratogenicity of Ni2+ was tested by the FETAX (Frog Embryo Teratogenesis Assay: Xenopus) procedure in the South African frog, Xenopus laevis. In seven assays, beginning at 5 h postfertilization, groups of Xenopus embryos were incubated for 96 h in media that contained Ni2+ (added as NiCl2) at concentrations ranging from 1 x 10(-7) to 3 x 10(-3) mol/L; control groups were incubated in the same medium without added NiCl2. At 101 h postfertilization, surviving embryos were counted, fixed in formalin, and examined by microscopy to determine their developmental stages, malformations, and head-to-tail lengths. In control embryos, survival was greater than or equal to 95% and malformations were less than or equal to 7%. Malformations were found in greater than 95% of embryos exposed to Ni2+ concentrations greater than or equal to 5.6 mumol/L. The most frequent malformations in Ni(2+)-exposed embryos were ocular, skeletal, and intestinal deformities; less common malformations included facial, cardiac, and integumentary deformities. Other abnormalities, not categorized as malformations, included stunted growth, dermal hypopigmentation, and coelomic effusions or hemorrhages. The median embryolethal concentration (LC50) of Ni2+ was 365 (SE +/- 9) mumol/L; the median teratogenic concentration (EC50) was 2.5 (SE +/- 0.1) mumol/L; the Teratogenic Index (TI = LC50/EC50) was 147 (SE +/- 5), indicating that Ni2+ is a potent teratogen for Xenopus laevis. Experiments in which Ni(2+)-exposures were limited to specific 24 h periods showed that Xenopus embryos were most susceptible to Ni(2+)-induced malformations on the second and third days of life, during the most active period of organogenesis.
    [Abstract] [Full Text] [Related] [New Search]