These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Coordinate regulation of Phase I and II xenobiotic metabolisms by the Ah receptor and Nrf2.
    Author: Köhle C, Bock KW.
    Journal: Biochem Pharmacol; 2007 Jun 15; 73(12):1853-62. PubMed ID: 17266942.
    Abstract:
    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor with important roles in metabolic adaptation, normal physiology and dioxin toxicology. Metabolic adaptation is based on coordinate regulation of a set of xenobiotic-metabolizing enzymes (XMEs), termed AhR battery. Coordination is achieved by AhR/Arnt-binding to XREs (xenobiotic response elements), identified in the 5' upstream region of AhR target genes. The AhR battery encodes Phase I and II enzymes. Interestingly, these Phase II genes are linked to the Nrf2 gene battery that encodes enzymes that are essential in protection against oxidative/electrophile stress. Nrf2 binds to AREs (antioxidant response elements) in the regulatory region of a large and distinct set of target genes. Functionally characterized response elements such as XREs and AREs in the regulatory region of target genes may provide a genetic basis to understand AhR- and Nrf2-induced genes. Linkage between AhR and Nrf2 batteries is probably achieved by multiple mechanisms, including Nrf2 as a target gene of the AhR, indirect activation of Nrf2 via CYP1A1-generated reactive oxygen species, and direct cross-interaction of AhR/XRE and Nrf2/ARE signaling. Linkage appears to be species- and cell-dependent. However, mechanisms linking XRE- and ARE-controlled Phase II genes need further investigation. Tightened coupling between Phases I and II by AhR- and Nrf2-induced XMEs may greatly attenuate health risks posed by CYP1A1-generated toxic intermediates and reactive oxygen species. Better recognition of coordinate Phase I and II metabolisms may improve risk assessment of reactive toxic intermediates in the extrapolation to low level endo- and xenobiotic exposure.
    [Abstract] [Full Text] [Related] [New Search]