These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: UVO-tunable superhydrophobic to superhydrophilic wetting transition on biomimetic nanostructured surfaces.
    Author: Han JT, Kim S, Karim A.
    Journal: Langmuir; 2007 Feb 27; 23(5):2608-14. PubMed ID: 17269808.
    Abstract:
    A novel strategy for a tunable sigmoidal wetting transition from superhydrophobicity to superhydrophilicity on a continuous nanostructured hybrid film via gradient UV-ozone (UVO) exposure is presented. Along a single wetting gradient surface (40 mm), we could visualize the superhydrophobic (thetaH2O > 165 degrees and low contact angle hysteresis) transition (165 degrees > thetaH2O > 10 degrees ) and superhydrophilic (thetaH2O < 10 degrees within 1 s) regions simply through the optical images of water droplets on the surface. The film is prepared through layer-by-layer assembly of negatively charged silica nanoparticles (11 nm) and positively charged poly(allylamine hydrochloride) with an initial deposition in a fractal manner. The extraordinary wetting transition on chemically modified nanoparticle layered surfaces with submicrometer- to micrometer-scale pores represents a competition between the chemical wettability and hierarchical roughness of surfaces as often occurs in nature (e.g., lotus leaves, insect wings, etc).
    [Abstract] [Full Text] [Related] [New Search]