These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Insight into the profibrinolytic activity of dermatan sulfate: effects on the activation of plasminogen mediated by tissue and urinary plasminogen activators.
    Author: Castañon MM, Gamba C, Kordich LC.
    Journal: Thromb Res; 2007; 120(5):745-52. PubMed ID: 17270255.
    Abstract:
    INTRODUCTION: Dermatan sulfate (DS) is well-known for its anticoagulant activity through binding to heparin cofactor II to enhance antithrombin action. It has also been suggested that DS has a profibrinolytic effect, although the exact molecular mechanism is as yet unknown. MATERIALS AND METHODS: An in vitro amidolytic method was used to study the effect of high and low molecular weight-DS on the activation of Glu and Lys-plasminogen by tissue and urinary plasminogen activators (t-PA and u-PA). RESULTS: Both high and low molecular weight-DS exhibited a stimulating effect on the activation of plasminogen by PAs. Interestingly, high molecular weight-DS stimulated Glu and Lys-plasminogen activation by t-PA and u-PA in a way and to an extent similar to that in which fibrin(ogen) degradation products (PDF) increased the t-PA assay. Meanwhile low molecular weight-DS had a lower effect. No DS had any effect on plasmin or u-PA amidolytic activity. The facilitation of the conversion of Glu-plasminogen to plasmin in the presence of DS was confirmed by SDS-PAGE; high molecular weight-DS effect was greater than low molecular weight-DS in accordance with the chromogenic assays. Moreover, the combination of PDF and high and low molecular weight-DS, respectively, did not further stimulate t-PA activation of either Glu or Lys-plasminogen suggesting that both substances may compete for the same binding sites. CONCLUSIONS: Through in vitro assays we demonstrated that high and low molecular weight-DS enhance plasminogen activation by u-PA and t-PA, suggesting that the profibrinolytic activity of DS might be via potentiation of plasminogen conversion to plasmin.
    [Abstract] [Full Text] [Related] [New Search]