These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Muscle glycogen oxidation during prolonged exercise measured with oral [13C]glucose: comparison with changes in muscle glycogen content.
    Author: Harvey CR, Frew R, Massicotte D, Péronnet F, Rehrer NJ.
    Journal: J Appl Physiol (1985); 2007 May; 102(5):1773-9. PubMed ID: 17272412.
    Abstract:
    Plasma glucose and muscle glycogen oxidation during prolonged exercise [75-min at 48 and 76% maximal O(2) uptake (Vo(2 max))] were measured in eight well-trained male subjects [Vo(2 max) = 4.50 l/min (SD 0.63)] using a simplified tracer technique in which a small amount of glucose highly enriched in (13)C was ingested: plasma glucose oxidation was computed from (13)C/(12)C in plasma glucose (which was stable beginning at minute 30 and minute 15 during exercise at 48 and 76% Vo(2 max), respectively) and (13)CO(2) production, and muscle glycogen oxidation was estimated by subtracting plasma glucose oxidation from total carbohydrate oxidation. Consistent data from the literature suggest that this small dose of exogenous glucose does not modify muscle glycogen oxidation and has little effect, if any, on plasma glucose oxidation. The percent contributions of plasma glucose and muscle glycogen oxidation to the energy yield at 48% Vo(2 max) [15.1% (SD 3.8) and 45.9% (SD 5.8)] and at 76% Vo(2 max) [15.4% (SD 3.6) and 59.8% (SD 9.2)] were well in line with data previously reported for similar work loads and exercise durations using conventional tracer techniques. The significant reduction in glycogen concentration measured from pre- and postexercise vastus lateralis muscle biopsies paralleled muscle glycogen oxidation calculated using the tracer technique and was larger at 76% than at 48% Vo(2 max). However, the correlation coefficients between these two estimates of muscle glycogen utilization were not different from zero at each of the two work loads. The simplified tracer technique used in the present experiment appears to be a valid alternative approach to the traditional tracer techniques for computing plasma glucose and muscle glycogen oxidation during prolonged exercise.
    [Abstract] [Full Text] [Related] [New Search]