These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cholesteryl ester transfer protein (CETP) expression protects against diet induced atherosclerosis in SR-BI deficient mice.
    Author: Harder C, Lau P, Meng A, Whitman SC, McPherson R.
    Journal: Arterioscler Thromb Vasc Biol; 2007 Apr; 27(4):858-64. PubMed ID: 17272756.
    Abstract:
    OBJECTIVE: To determine whether expression of the human CETP transgene protects against diet-induced atherosclerosis in SR-BI deficient mice. METHODS AND RESULTS: SR-BI deficient (-/-) mice were crossed with CETP transgenic (CETPtg) mice to produce a colony of SR-BI(-/-) x CETPtg mice in a C57Bl/6 background. Age and sex matched groups of genetically modified and wild-type C57Bl/6 mice were fed a high fat, high cholesterol diet for 22 weeks. In both wild-type and SR-BI(-/-) mice, expression of the CETP transgene reduced the cholesterol content and increased the density of lipoprotein particles in the HDL density range. In SR-BI(-/-) x CETPtg mice, CETP activity inversely correlated with total plasma cholesterol levels and shifted the buoyant HDL typical of SR-BI deficiency toward a more normal density HDL particle. Atherosclerosis at the level of the aortic arch was evident in both male and female SR-BI deficient mice but occurred to a greater extent in the females. Expression of CETP markedly attenuated the development of atherosclerosis in SR-BI deficient mice fed an atherogenic diet (P<0.003). CONCLUSIONS: Expression of the human CETP transgene protects SR-BI deficient mice from atherosclerosis, consistent with a role for CETP in remodeling HDL and providing an alternative pathway for the selective uptake of HDL-CE by the liver.
    [Abstract] [Full Text] [Related] [New Search]