These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Involvement of the alpha4beta2 nicotinic receptor subtype in nicotine-induced attenuation of delta9-THC cerebellar ataxia: role of cerebellar nitric oxide. Author: Smith AD, Dar MS. Journal: Pharmacol Biochem Behav; 2007 Jan; 86(1):103-12. PubMed ID: 17275078. Abstract: We have recently reported that mediation of intracerebellar nicotine-induced attenuation of cerebellar delta9-THC ataxia was via the alpha4beta2 nAChR. The present study was meant to investigate the role of cerebellar nitric oxide (NO)-guanylyl cyclase (GC) signaling in the alpha4beta2-mediated attenuation in CD-1 male mice. Drugs were given via intracerebellar microinfusion using stereotaxically implanted guide cannulas, with ataxia evaluated by Rotorod. Intracerebellar microinfusion of SNP (sodium nitroprusside, NO donor; 15, 30, 60 pg) and SMT (S-methylisothiourea, inhibitor of inducible NO synthase; 70, 140, 280 fg) significantly enhanced and reduced, respectively, intracerebellar RJR-2403 (selective alpha4beta2 agonist)-induced attenuation of delta9-THC ataxia dose-dependently. Intracerebellar isoliquiritigenin (GC-activator; 1, 2, 4 pg) and ODQ (1H[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one, GC inhibitor; 200, 400, 800 fg), significantly enhanced and reduced, respectively, intracerebellar RJR-2403-induced attenuation of delta9-THC ataxia dose-dependently. Further support for the role of NO was evidenced via increases in cerebellar NO(x) (nitrate+nitrite) levels following microinfusion of nicotine or RJR-2403 as compared to control, whereas delta9-THC significantly decreased NO(x) levels. "Nicotine/RJR-2403+delta9-THC" treated mice had cerebellar NO(x) levels significantly increased as compared to mice infused with delta9-THC alone. Results of the present investigation support the role of cerebellar NO-GC signaling in alpha4beta2 nAChR subtype-mediated attenuation of delta9-THC ataxia.[Abstract] [Full Text] [Related] [New Search]