These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The effect glucocorticoids on aggressiveness in established colonies of rats. Author: Mikics E, Barsy B, Haller J. Journal: Psychoneuroendocrinology; 2007 Feb; 32(2):160-70. PubMed ID: 17275197. Abstract: It was repeatedly shown that glucocorticoids increase aggressiveness when subjects are socially challenged. However, the interaction between challenge exposure and glucocorticoid effects was not investigated yet. We studied this interaction by assessing the effects of glucocorticoids in established colonies of rats, i.e. in rats that were not exposed to an acute social challenge. Aggressiveness was high immediately after colony formation but decreased sharply within 4 days and remained stable thereafter. Mild dominance relations were observed in 11 colonies (65%). Approximately three weeks after colony formation, rats remained undisturbed or were injected with vehicle or corticosterone. Routine colony life was followed for 1h after treatments. Injections per se induced a mild and transient behavioral activation: resting was reduced, whereas exploration, social and agonistic interactions were increased. The change lasted about 15min. Corticosterone--although plasma corticosterone levels were increased--had no specific effect, as the behavior of vehicle- and corticosterone-treated rats was similar. Social rank had a minor impact on the results. In contrast, the pro-aggressive effects of corticosterone were robust under conditions of social challenge and were maintained after repeated exposure to aggressive encounters. It occurs that an acute increase in glucocorticoids promotes social challenge-induced aggressiveness, but does not increase aggressiveness under routine conditions. We hypothesize that the pro-aggressive effects of glucocorticoids develop in conjunction with challenge-induced neuronal (e.g. monoaminergic) activation.[Abstract] [Full Text] [Related] [New Search]