These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Paeonol suppresses intercellular adhesion molecule-1 expression in tumor necrosis factor-alpha-stimulated human umbilical vein endothelial cells by blocking p38, ERK and nuclear factor-kappaB signaling pathways. Author: Nizamutdinova IT, Oh HM, Min YN, Park SH, Lee MJ, Kim JS, Yean MH, Kang SS, Kim YS, Chang KC, Kim HJ. Journal: Int Immunopharmacol; 2007 Mar; 7(3):343-50. PubMed ID: 17276892. Abstract: Paeonol (2'-hydroxy-4'-methoxyacetophenone), the main active compound of the traditionally used Chinese herb Paeonia lactiflora Pallas, has anti-inflammatory, antioxidant and cardiovascular protective activities. We studied how the levels of intercellular adhesion molecule-1 (ICAM-1), one of the key molecules in the development of atherosclerosis, might be affected by paeonol in tumor necrosis factor-alpha (TNF-alpha)-activated human umbilical vein endothelial cells (HUVECs). Paeonol concentration-dependently inhibited the production of ICAM-1; it inhibited nuclear factor-kappaB (NF-kappaB) p65 translocation into the nucleus and the phosphorylation of inhibitory factor kappaBalpha (IkappaBalpha). It also blocked the TNF-alpha-induced phosphorylation of p38 and extracellular signal-regulated kinase (ERK), which are involved in regulating ICAM-1 production by TNF-alpha. Paeonol inhibited U937 monocyte adhesion to HUVECs stimulated by TNF-alpha, suggesting that it may inhibit the binding of monocytes to endothelium by regulating the production of critical adhesion molecules by TNF-alpha. The inhibitory effect of paeonol on ICAM-1 production might be mediated by inhibiting p38, ERK and NF-kappaB signaling pathways, which are involved in TNF-alpha-induced ICAM-1 production. Thus, paeonol may be beneficial in the treatment of cardiovascular disorders such as atherosclerosis.[Abstract] [Full Text] [Related] [New Search]