These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The protein kinase-C activation domain of the parathyroid hormone.
    Author: Jouishomme H, Whitfield JF, Chakravarthy B, Durkin JP, Gagnon L, Isaacs RJ, MacLean S, Neugebauer W, Willick G, Rixon RH.
    Journal: Endocrinology; 1992 Jan; 130(1):53-60. PubMed ID: 1727720.
    Abstract:
    The PTH activates both adenylate cyclase and a mechanism that increases membrane-associated protein kinase-C (PKC) activity. To define the hormone's PKC activation domain we have used a panel of PTH fragments and ROS 17/2 rat osteosarcoma cells as the target cells. PTH equally and maximally increased PKC activity in ROS 17/2 cell membranes at physiological concentrations between 1-50 pM and 5-50 nM, but not at intermediate concentrations or concentrations above 50 nM. The PKC-stimulating picomolar concentrations of PTH did not stimulate adenylate cyclase in ROS 17/2 cells, while the PKC-stimulating nanomolar concentrations of the hormone did stimulate adenylate cyclase, with an EC50 of 1-2 nM. Very high concentrations of PTH, such as 100 nM, that did not increase membrane PKC activity were still able to maximally stimulate adenylate cyclase. PTH fragments lacking the N-terminal amino acids needed for adenylate cyclase activation increased membrane PKC activity, and the PKC activation domain was found to lie within the 28-34 region of the PTH molecule. This was confirmed by showing that optimally effective picomolar concentrations of the human PTH-(28-34) fragment itself were able to increase membrane-associated PKC activity to the same extent as the optimally effective picomolar concentrations of the intact PTH-(1-84) or the larger PTH-(1-34) or PTH-(3-34) fragments.
    [Abstract] [Full Text] [Related] [New Search]