These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Retinotectal ganglion cells in the zebrafish, Danio rerio.
    Author: Ott M, Walz BC, Paulsen UJ, Mack AF, Wagner HJ.
    Journal: J Comp Neurol; 2007 Apr 01; 501(4):647-58. PubMed ID: 17278143.
    Abstract:
    The morphology of retinotectal ganglion cells was investigated by retrograde transport of dextran amines applied into the optic tectum in vitro. Based on criteria such as stratification pattern and size of the dendritic processes, as well as the shape and position of the soma within the dendritic field, three main groups of ganglion cell types with a total of nine different types were identified. The first group included monostratified cells, of which two types (Ma(2) and Mb(5)) may be ON- and OFF-variants, and the third (Mb(6)) had its dendritic field as a narrow band at the inner border of the inner plexiform layer. These three cells had the largest dendritic fields, with areas exceeding 40,000 microm(2). In two additional monostratified cells the dendrites were spread over the entire width of either sublamina a or sublamina b of the inner plexiform layer (Ma, Mb). They were of intermediate size with mean dendritic field areas between 10,000 and 20,000 microm(2). The second group contained two types of bistratified cells (Bb(4/5) and Bb(4,5/5,6)) with two distinct bands of dendritic stratifications in sublamina b. One of them had the smallest dendritic field (below 5,000,mm(2)) of all cell types in the sample. The diffuse cells of the third group had their dendrites across the entire width of the inner plexiform layer. The sample of retinotectal cells investigated in this study included types described previously (Mangrum et al. [2002] Vis Neurosci 19:767-779) but also new types not described previously.
    [Abstract] [Full Text] [Related] [New Search]