These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Modification of intracellular pH and thermosensitivity. Author: Lyons JC, Kim GE, Song CW. Journal: Radiat Res; 1992 Jan; 129(1):79-87. PubMed ID: 1728060. Abstract: The effects of amiloride (an inhibitor of Na+/H+ antiport), DIDS (an inhibitor of Na(+)-coupled and Na(+)-independent HCO3-/Cl- exchange) and nigericin (K+/H+ ionophore) alone and in various combinations on the intracellular pH (pHi) and thermosensitivity of SCK tumor cells were studied. Hyperthermia alone at 43 degrees C for 2 h decreased pHi of SCK cells by 0.15-0.20 pH units, as measured fluorometrically using the pH-sensitive dye BCECF. When the cells were treated with 0.5 mM amiloride at 37 degrees C, the pHi declined by 0.10-0.15 pH units at an extracellular pH (pHe) of both 7.2 and 6.6. Amiloride at 0.5 mM enhanced the thermal damage to SCK cells at pHe 6.6 but not at pHe 7.2. DIDS alone at 0.1 mM exerted no effect on pHi or cellular thermosensitivity. DIDS, however, enhanced the effects of amiloride in decreasing pHi and in increasing the thermoresponse of SCK cells, particularly at pHe 6.6. Treatment of the cells with nigericin at 0.1-1.0 micrograms/ml lowered the pHi and enhanced the thermosensitivity of the cells in a dose-dependent manner. Reductions in pHi and increases in thermosensitivity by nigericin at the lower concentration at pHe 6.6 were far greater than at pHe 7.2. When a mixture of 1.0 micrograms/ml nigericin, 0.5 mM amiloride, and 0.1 mM DIDS was present in the medium, the pHi rapidly decreased by about 0.3 and 0.4 pH units at pHe 7.2 and 6.6, respectively. This drug combination was also extremely effective in sensitizing SCK cells to heat, particularly at pHe 6.6. The fact that the thermosensitization by these drugs at pHe 6.6 is more pronounced than at pHe 7.2 and that intratumor environments are known to be acidic strongly suggested that it may then be possible to enhance the thermal damage with such drugs preferentially in tumors relative to normal tissues.[Abstract] [Full Text] [Related] [New Search]