These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interactive adsorption behavior of NAD+ at a gold electrode surface. Author: Damian A, Omanovic S. Journal: Langmuir; 2007 Mar 13; 23(6):3162-71. PubMed ID: 17286417. Abstract: The adsorption of an oxidized form of nicotinamide adenine dinucleotide, NAD+, on a polycrystalline gold electrode surface and the subsequent surface conformation of the molecule were investigated over a wide temperature and potential range, using electrochemical differential capacitance and PM-IRRAS techniques. The adsorption process was described by the Langmuir adsorption isotherm. The corresponding thermodynamic parameters were determined: the Gibbs energy, enthalpy, and entropy of adsorption. The large negative Gibbs energy of adsorption (-43 +/- 4 kJ mol-1 and -39 +/- 2 kJ mol-1 on a positively and negatively charged surface, respectively) confirms that the NAD+ adsorption process is highly spontaneous, while the large entropy gain (285 J K-1 mol-1 and 127 J K-1 mol-1 on a positively and negatively charged surface, respectively) was found to represent the adsorption driving force. It was demonstrated that the energetics of the adsorption process is surface-charge controlled, while its kinetics is both mass-transport and surface-charge controlled. A surface-charge dependent conformation model for the adsorbed NAD+ molecule is proposed. These findings suggest that the origin of the NAD+ reduction overpotential is related to the surface conformation of the adsorbed NAD+ molecule, rather than to the electrode Fermi level position.[Abstract] [Full Text] [Related] [New Search]