These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lack of endothelial nitric oxide synthase promotes endothelin-induced hypertension: lessons from endothelin-1 transgenic/endothelial nitric oxide synthase knockout mice.
    Author: Quaschning T, Voss F, Relle K, Kalk P, Vignon-Zellweger N, Pfab T, Bauer C, Theilig F, Bachmann S, Kraemer-Guth A, Wanner C, Theuring F, Galle J, Hocher B.
    Journal: J Am Soc Nephrol; 2007 Mar; 18(3):730-40. PubMed ID: 17287431.
    Abstract:
    Endothelin-1 (ET-1) is one of the most potent biologic vasoconstrictors. Nevertheless, transgenic mice that overexpress ET-1 exhibit normal BP. It was hypothesized that vascular effects of ET-1 may be antagonized by an increase of the endothelial counterpart of ET-1, nitric oxide (NO), which is produced by the endothelial NO synthase (eNOS). Therefore, cross-bred animals of ET transgenic mice (ET+/+) and eNOS knockout (eNOS-/-) mice and were generated, and BP and endothelial function were evaluated in these animals. Endothelium-dependent and -independent vascular function was assessed as relaxation/contraction of isolated preconstricted aortic rings. The tissue ET and NO system was determined in aortic rings by quantitative real-time PCR and Western blotting. Systolic BP was similar in ET+/+ and wild-type (WT) mice but was significantly elevated in eNOS-/- mice (117 +/- 4 mmHg versus 94 +/- 6 mmHg in WT mice; P < 0.001) and even more elevated in ET+/+ eNOS-/- cross-bred mice (130 +/- 4 mmHg; P < 0.05 versus eNOS-/-). Maximum endothelium-dependent relaxation was enhanced in ET+/+ mice (103 +/- 6 versus 87 +/- 4% of preconstriction in WT littermates; P < 0.05) and was completely blunted in eNOS-/- (-3 +/- 4%) and ET+/+ eNOS-/- mice (-4 +/- 4%), respectively. Endothelium-independent relaxation was comparable among all groups. Quantitative real-time PCR as well as Western blotting revealed an upregulation of the aortic ET(A) and ET(B) receptors in ET+/+ eNOS-/-, whereas eNOS was absent in aortic rings of eNOS-/- and ET+/+ eNOS-/- mice. ET-1 aortic tissue concentrations were similar in WT mice and ET+/+ eNOS-/- mice most probably as a result of an enhanced clearance of ET-1 by the upregulated ET(B) receptor. These data show for the first time that in transgenic mice that overexpress human ET-1, additional knockout of eNOS results in a further enhancement of BP as compared with eNOS-/- mice. The human ET+/+ eNOS-/- mice therefore represent a novel model of hypertension as a result of an imbalance between the vascular ET-1 and NO systems.
    [Abstract] [Full Text] [Related] [New Search]