These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nondestructive determination of oil content and fatty acid composition in perilla seeds by near-infrared spectroscopy.
    Author: Kim KS, Park SH, Choung MG.
    Journal: J Agric Food Chem; 2007 Mar 07; 55(5):1679-85. PubMed ID: 17288449.
    Abstract:
    Near-infrared reflectance spectroscopy (NIRS) was used as a rapid and nondestructive method to determine the oil content and fatty acid composition in intact seeds of perilla [Perilla frutescens var. japonica (Hassk.) Hara] germplasms in Korea. A total of 397 samples (about 2 g of intact seeds) were scanned in the reflectance mode of a scanning monochromator, and the reference values for the oil content and fatty acid composition were measured by gravimetric method and gas-liquid chromatography, respectively. Calibration equations for oil and individual fatty acids were developed using modified partial least-squares regression with internal cross validation (n = 297). The equations for oil and oleic and linolenic acid had lower standard errors of cross-validation (SECV), higher R2 (coefficient of determination in calibration), and higher ratio of unexplained variance divided by variance (1-VR) values than those for palmitic, stearic, and linoleic acid. Prediction of an external validation set (n = 100) showed significant correlation between reference values and NIRS estimated values based on the standard error of prediction (SEP), r2 (coefficient of determination in prediction), and the ratio of standard deviation (SD) of reference data to SEP. The models for oil content and major fatty acids, oleic and linolenic acid, had relatively higher values of SD/SEP(C) and r2 (more than 3.0 and 0.9, respectively), thereby characterizing those equations as having good quantitative information, whereas those of palmitic, stearic, and linoleic acid had lower values (below 2.0 and 0.7, respectively), unsuitable for screening purposes. The results indicated that NIRS could be used to rapidly determine oil content and fatty acid composition (oleic and linolenic acid) in perilla seeds in the breeding programs for development of high-quality perilla oil.
    [Abstract] [Full Text] [Related] [New Search]