These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Estrogen regulation of neurotrophin expression in sympathetic neurons and vascular targets. Author: Kaur G, Janik J, Isaacson LG, Callahan P. Journal: Brain Res; 2007 Mar 30; 1139():6-14. PubMed ID: 17289002. Abstract: We hypothesize that estrogen exerts a modulatory effect on sympathetic neurons to reduce neural cardiovascular tone and that these effects are modulated by nerve growth factor (NGF), a neurotrophin that regulates sympathetic neuron survival and maintenance. We examined the effects of estrogen on NGF and tyrosine hydroxylase (TH) protein content in specific vascular targets. Ovariectomized, adult Sprague-Dawley rats were implanted with placebo or 17beta-estradiol (release rate, 0.05 mg/day). Fourteen days later, NGF levels in the superior cervical ganglia (SCG) and its targets, the heart, external carotid artery, and the extracerebral blood vessels, as well as estrogen receptor alpha (ERalpha) content levels in the heart, were determined using semi-quantitative Western blot analysis. TH levels in the SCG and extracerebral blood vessels were determined by Western blotting and immunocytochemistry, respectively. Circulating levels of 17beta-estradiol and prolactin (PRL) were quantified by RIA. Estrogen replacement significantly decreased NGF protein in the SCG and its targets, the external carotid artery, heart and extracerebral blood vessels. TH protein associated with the extracerebral blood vessels was also significantly decreased, but ERalpha levels were significantly increased in the heart following estrogen replacement. These results indicate that estrogen reduces NGF protein content in sympathetic vascular targets, which may lead to decreased sympathetic innervations to these targets, and therefore reduced sympathetic regulation. In addition, the estrogen-induced increase in ERalpha levels in the heart, a target tissue of the SCG, suggests that estrogen may sensitize the heart to further estrogen modulation, and possibly increase vasodilation of the coronary vasculature.[Abstract] [Full Text] [Related] [New Search]