These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bioindicators and reproductive effects of prolonged 17beta-oestradiol exposure in a marine fish, the sand goby (Pomatoschistus minutus). Author: Robinson CD, Brown E, Craft JA, Davies IM, Megginson C, Miller C, Moffat CF. Journal: Aquat Toxicol; 2007 Mar 30; 81(4):397-408. PubMed ID: 17289167. Abstract: The effects of 17beta-oestradiol (E2) on mortality, growth rates, sexual maturation, hepatic vitellogenin (VTG) mRNA expression and reproductive success were investigated during an 8-month, water-borne exposure of a marine fish, the sand goby (Pomatoschistus minutus). Indicators of oestrogenic exposure were investigated as predictors of population-level reproductive success. E2 exposure concentrations were <5 (below limit of detection), 16+/-3, 97+/-20 and 669+/-151 ng l(-1) (bootstrap means and standard errors). The carrier solvent (<20 microl l(-1) propan-2-ol) significantly reduced the rate of egg production compared to untreated fish, but did not significantly affect male VTG mRNA expression, brood size, or the other studied parameters. Fish exposed to 16 ng l(-1) E2 showed few adverse effects compared with solvent only-exposed fish. Exposure to 97 ng l(-1) E2 significantly inhibited male sexual maturation, induced male VTG mRNA expression and delayed spawning. The 97 ng l(-1) E2 exposed population also produced fertile eggs at a significantly slower rate than solvent controls; however, brood size, fertility and overall reproductive success were not significantly affected. Exposure to 669 ng l(-1) E2 significantly increased mortality, adversely affected haematological parameters and caused an almost total lack of reproductive activity, with both sexes failing to mature. Reproductive failure following exposure to 669 ng l(-1) E2 was evident in both sexes when crossed with untreated animals. This work indicates that marine fish are similarly as sensitive to oestrogenic exposure as freshwater fish, that exposure biomarkers such as VTG are more sensitive to exposure than are reproductive effects, and that the use of carrier solvents in long-term reproductive studies should be avoided.[Abstract] [Full Text] [Related] [New Search]