These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Deep sea immunity: unveiling immune constituents from the hydrothermal vent mussel Bathymodiolus azoricus.
    Author: Bettencourt R, Roch P, Stefanni S, Rosa D, Colaço A, Santos RS.
    Journal: Mar Environ Res; 2007 Aug; 64(2):108-27. PubMed ID: 17291578.
    Abstract:
    Marine molluscs are subjected to constant microbial threats in their natural habitats. As a result, they represent suitable models for the study of the molecular mechanisms that govern defense reactions in marine organisms. To understand humoral and cellular defense reactions in animals defying extreme physical and chemical conditions we set out to investigate the deep sea hydrothermal vent mussel Bathymodiolus azoricus found in abundance at the Mid-Atlantic Ridge. In the present study, hemocytes were stimulated with compounds of microbial origin and cellular morphological alterations as well as the production of superoxide assessed. Consequently, zymosan, glucan and peptidoglycan were considered as potent inducers of cellular reactions for inducing drastic cell morphology changes and high levels of superoxide production. Furthermore, we have presented for the first time in a deep sea hydrothermal vent animal, molecular evidence of the Rel-homology domain, a conserved motif present in all members of the Rel/nuclear-factor NF-kappaB family. Additionally we have demonstrated the occurrence of the antibacterial gene mytilin in Bathymodiolus azoricus gill tissues. Our results support the premise of an evolutionary conserved innate immune system in Bathymodiolus. Such system is seemingly homologous to that of Insects and other Bivalves and may involve the participation of NF-kappaB transcription factors and antibacterial genes.
    [Abstract] [Full Text] [Related] [New Search]