These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cytocompatibility and blood compatibility of multifunctional fibroin/collagen/heparin scaffolds.
    Author: Lu Q, Zhang S, Hu K, Feng Q, Cao C, Cui F.
    Journal: Biomaterials; 2007 May; 28(14):2306-13. PubMed ID: 17292467.
    Abstract:
    An applicable matrix used in tissue engineering should not only have suitable mechanical properties, porous structures and biocompatibility that facilitate the adhesion, growth and proliferation of tissue cells, but also have the ability to release bioactive factors to provide a more conducive and inductive environment for tissue growth. Because of the harsh preparation conditions and deficiency of mechanical properties, it is still difficult for fibroin and collagen matrices to possess these multifunctional properties. In this research, we successfully prepared fibroin/collagen hybrid scaffolds containing heparin that possess multifunctional properties under mild conditions. These scaffolds maintain outstanding mechanical properties and porous structures of fibroin-based scaffolds. Furthermore, the scaffolds keep the bioactivity of collagen, becoming delivering systems that release heparin slowly to make the scaffolds blood compatible. Compared with fibroin/collagen scaffolds, the scaffolds containing heparin further facilitate the growth of HepG2 cells since a more complex, dynamic environment was formed to promote the cell growth. Considering the mild aqueous preparation environment without crosslinking reaction, besides promoting the progress in blood contacting tissue engineering, our research has also opened a door to prepare various multifunctional fibroin/collagen hybrid matrices that combine the advantages of fibroin and collagen.
    [Abstract] [Full Text] [Related] [New Search]