These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ribosome recycling factor and release factor 3 action promotes TnaC-peptidyl-tRNA Dropoff and relieves ribosome stalling during tryptophan induction of tna operon expression in Escherichia coli. Author: Gong M, Cruz-Vera LR, Yanofsky C. Journal: J Bacteriol; 2007 Apr; 189(8):3147-55. PubMed ID: 17293419. Abstract: Upon tryptophan induction of tna operon expression in Escherichia coli, the leader peptidyl-tRNA, TnaC-tRNA(2)(Pro), resists cleavage, resulting in ribosome stalling at the tnaC stop codon. This stalled ribosome blocks Rho factor binding and action, preventing transcription termination in the tna operon's leader region. Plasmid-mediated overexpression of tnaC was previously shown to inhibit cell growth by reducing uncharged tRNA(2)(Pro) availability. Which factors relieve ribosome stalling, facilitate TnaC-tRNA(2)(Pro) cleavage, and relieve growth inhibition were addressed in the current study. In strains containing the chromosomal tna operon and lacking a tnaC plasmid, the overproduction of ribosome recycling factor (RRF) and release factor 3 (RF3) reduced tna operon expression. Their overproduction in vivo also increased the rate of cleavage of TnaC-tRNA(2)(Pro), relieving the growth inhibition associated with plasmid-mediated tnaC overexpression. The overproduction of elongation factor G or initiation factor 3 did not have comparable effects, and tmRNA was incapable of attacking TnaC-tRNA(2)(Pro) in stalled ribosome complexes. The stability of TnaC-tRNA(2)(Pro) was increased appreciably in strains deficient in RRF and RF3 or deficient in peptidyl-tRNA hydrolase. These findings reveal the existence of a natural mechanism whereby an amino acid, tryptophan, binds to ribosomes that have just completed the synthesis of TnaC-tRNA(2)(Pro). Bound tryptophan inhibits RF2-mediated cleavage of TnaC-tRNA(2)(Pro), resulting in the stalling of the ribosome translating tnaC mRNA. This stalling results in increased transcription of the structural genes of the tna operon. RRF and RF3 then bind to this stalled ribosome complex and slowly release TnaC-tRNA(2)(Pro). This release allows ribosome recycling and permits the cleavage of TnaC-tRNA(2)(Pro) by peptidyl-tRNA hydrolase.[Abstract] [Full Text] [Related] [New Search]