These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reduced baroreflex sensitivity in alcoholic cirrhosis: relations to hemodynamics and humoral systems.
    Author: Møller S, Iversen JS, Henriksen JH, Bendtsen F.
    Journal: Am J Physiol Heart Circ Physiol; 2007 Jun; 292(6):H2966-72. PubMed ID: 17293491.
    Abstract:
    In cirrhosis, arterial vasodilatation leads to central hypovolemia and activation of the sympathetic nervous and renin-angiotensin-aldosterone systems. As the liver disease and circulatory dysfunction may affect baroreflex sensitivity (BRS), we assessed BRS in a large group of patients with cirrhosis and in controls who were all supine and some after 60 degrees passive head-up and 30 degrees head-down tilting in relation to central hemodynamics and activity of the sympathetic nervous and renin-angiotensin-aldosterone systems. One-hundred and five patients (Child classes A/B/C: 21/55/29) and 25 (n=11 + 14) controls underwent a full hemodynamic investigation. BRS was assessed by cross-spectral analysis of variabilities between blood pressure and heart rate time series. The median BRS was significantly lower in the supine cirrhotic patients, 3.7 (range 0.3-30.7) ms/mmHg than in matched controls (n=11): 14.3 (6.1-23.6) ms/mmHg, P<0.001. A stepwise multiple-regression analysis revealed that serum sodium (P=0.044), heart rate (P=0.027), and central circulation time (P=0.034) independently correlated with BRS. Head-down tilting had no effects on BRS, but, after head-up tilting, BRS was similar in the patients (n=23) and controls (n=14). In conclusion, BRS is reduced in cirrhosis in the supine position and relates to various aspects of cardiovascular dysfunction, but no further reduction was observed in parallel with the amelioration of the hyperdynamic circulation after head-up tilting. The results indicate that liver dysfunction and compensatory mechanisms to vasodilatation may be involved in the low BRS, which may contribute to poor cardiovascular adaptation in cirrhosis.
    [Abstract] [Full Text] [Related] [New Search]