These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Restoration of conduction and growth of axons through injured spinal cord of neonatal opossum in culture.
    Author: Treherne JM, Woodward SK, Varga ZM, Ritchie JM, Nicholls JG.
    Journal: Proc Natl Acad Sci U S A; 1992 Jan 01; 89(1):431-4. PubMed ID: 1729714.
    Abstract:
    The ability of neurons in the central nervous system to grow through a lesion and restore conduction has been analyzed in a developing spinal cord. The preparation consists of the entire central nervous system of the newly born opossum (Monodelphis domestica), isolated and maintained in culture. Cell division, cell migration, and reflexes are maintained in such preparations for up to 8 days in culture. In the present experiments, massive lesions were produced by crushing the spinal cord, which abolished all conduction for a day. By 2-3 days after injury, electrical conduction across the crush could be observed. After 4-5 days, clear recovery had occurred: the amplitude of the conducted volley was comparable to that in acute preparations. In such preparations, the spinal cord had largely regained its normal appearance at the crush site. Axons stained by carbocyanine dyes or horseradish peroxidase had, by 4 days, grown in profusion through the lesion and several millimeters beyond it. These experiments demonstrate that neurons in the central nervous system of newly born mammals, unlike those in adults, can respond to injury by rapid and extensive outgrowth in the absence of peripheral nerve bridges or antibodies that neutralize inhibitory factors of myelin. With rapid and reliable regeneration occurring in vitro, it becomes practicable to assay the effects of molecules that promote or inhibit the restoration of functional connections.
    [Abstract] [Full Text] [Related] [New Search]