These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Rational design of affinity peptide ligand by flexible docking simulation.
    Author: Liu FF, Wang T, Dong XY, Sun Y.
    Journal: J Chromatogr A; 2007 Mar 30; 1146(1):41-50. PubMed ID: 17298835.
    Abstract:
    Rational design of affinity peptide ligands of proteins by flexible docking simulation is performed using the SYBYL program package. This approach involves the use of experimental data to verify a scoring function that can be used to assess the affinity of a peptide for its target protein. The enzyme-linked immunosorbent assay (ELISA) data of several peptides displayed on phage surfaces for insulin and lysozyme, respectively, reported in literature are used for the purpose. It is found that the absolute values of the Dscore calculated from the docking correspond well to the ELISA data that relate to the affinity between the peptides and the target molecule. So, the Dscore function is used to assess the affinity of docked peptides in a pentapeptide library designed on the basis of protein (alpha-amylase) structure. As a result, a pentapeptide with a high Dscore value is selected and a hexapeptide (FHENWS) is built by linking serine to its C-terminal to lengthen the peptide. Molecular surface analysis with the MOLCAD program reveals that electrostatic interactions (including hydrogen bonds) and Van der Waals forces contribute to the affinity of the hexapeptide for alpha-amylase. Chromatographic experiments with the immobilized peptide have given further evidence for this observation. Adsorption isotherm described by the Langmuir equation indicates that the apparent binding constant of alpha-amylase to the immobilized hexapeptide was 2.5x10(5)L/mol. Finally, high affinity and specificity of the affinity adsorbent is exemplified by the purification of alpha-amylase from crude fermentation broth of Bacillus subtilis.
    [Abstract] [Full Text] [Related] [New Search]