These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Novel LC-ESI/MS/MS(n) method for the characterization and quantification of 2'-deoxyguanosine adducts of the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by 2-D linear quadrupole ion trap mass spectrometry.
    Author: Goodenough AK, Schut HA, Turesky RJ.
    Journal: Chem Res Toxicol; 2007 Feb; 20(2):263-76. PubMed ID: 17305409.
    Abstract:
    An accurate and sensitive liquid chromatography-electrospray ionization/multi-stage mass spectrometry (LC-ESI/MS/MS(n)) technique has been developed for the characterization and quantification of 2'-deoxyguanosine (dG) adducts of the dietary mutagen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). PhIP is an animal and potential human carcinogen that occurs in grilled meats. Following enzymatic digestion and adduct enrichment by solid-phase extraction (SPE), PhIP-DNA adducts were analyzed by MS/MS and MS(n) scan modes on a 2-D linear quadrupole ion trap mass spectrometer (QIT/MS). The major DNA adduct, N-(deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-PhIP), was detected in calf thymus (CT) DNA modified in vitro with a bioactivated form of PhIP and in the colon and liver of rats given PhIP as part of the diet. The lower limit of detection (LOD) was 1 adduct per 10(8) DNA bases, and the limit of quantification (LOQ) was 3 adducts per 10(8) DNA bases in both MS/MS and MS(3) scan modes, using 27 microg of DNA for analysis. Measurements were based on isotope dilution with the internal standard, N-(deoxyguanosin-8-yl)-2-amino-1-(trideutero)methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-[2H3C]-PhIP). The selected reaction monitoring (SRM) scan mode in MS/MS was employed to monitor the loss of deoxyribose (dR) from the protonated molecules of the adducts ([M + H - 116]+). The consecutive reaction monitoring (CRM) scan modes in MS(3) and MS(4) were used to measure and further characterize product ions of the aglycone ion (BH2+) (Guanyl-PhIP). The MS(3) scan mode was effective in eliminating isobaric interferences observed in the MS/MS scan mode and resulted in an improved signal-to-noise (S/N) ratio. Moreover, the product ion spectra obtained by the MS(n) scan modes provided rich structural information about the adduct and were used to corroborate the identity of dG-C8-PhIP. In addition, an isomeric dG-PhIP adduct was detected in vivo. This LC-ESI/MS/MS(n) method is the first reported application on the use of the MS(3) scan mode for the analysis of DNA adducts in vivo.
    [Abstract] [Full Text] [Related] [New Search]