These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Serum-free culture of fractionated bovine bronchial epithelial cells.
    Author: Beckmann JD, Takizawa H, Romberger D, Illig M, Claassen L, Rickard K, Rennard SI.
    Journal: In Vitro Cell Dev Biol; 1992 Jan; 28A(1):39-46. PubMed ID: 1730570.
    Abstract:
    Procedures for the serum-free culture of a density fractionated population of bovine bronchial epithelial cells have been established. Epithelial cells dispersed by protease digestion were fractionated by density equilibrium centrifugation, followed by plating of the small basal-like population on type I collagen-coated culture dishes. Two or three passages of 1:4 split enriched for a population of actively dividing cells, which could be stored in liquid nitrogen for subsequent use. Clonal growth assays revealed optimum proliferation using a 1:1 mixture of medium RPMI 1640 and LHC-9, a medium employed for human bronchial epithelial cells. Cellular growth rate, which was 0.6 to 1.3 doublings per day depending on the cell preparation, was conveniently decreased by supplementing LHC-9 medium with less than 50% RPMI. In contrast to airway epithelial cell cultures from other species, serum stimulated the growth of bovine bronchial epithelial cells in this system. Transforming growth factor beta 1, however, inhibited growth and induced differentiation into a squamous phenotype. Also in contrast with other systems, the bovine cells were resistant to growth inhibition by 100 nM tetradecanoyl phorbol acetate or 1 microM calcium ionophore A23187. Combination of phorbol ester with ionophore decreased mitotic activity, although induction of squamous morphology was not observed. Therefore, growth inhibition and squamous differentiation were not tightly coupled in this system. Finally, biologically synthesized matrix deposited by these cells stimulated growth rate. This culture system will therefore be useful in assessing the activities of both soluble and matrix-associated factors in the absence of serum.
    [Abstract] [Full Text] [Related] [New Search]