These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Two novel patterns of transforming growth factor beta (TGF-beta) binding to cell surface proteins are dependent upon the binding of TGF-beta 1 and indicate a mechanism of positive cooperativity.
    Author: Segarini PR, Ziman JM, Kane CJ, Dasch JR.
    Journal: J Biol Chem; 1992 Jan 15; 267(2):1048-53. PubMed ID: 1730634.
    Abstract:
    Three isoforms of the transforming growth factor beta (TGF-beta) family, TGF-beta 1, TGF-beta 2, and TGF-beta 3, bind specifically and with high affinity to several cell surface components known as type I, type II, and type III proteins. The type I and II proteins may serve as biological receptors, whereas the type III protein does not appear to be associated with TGF-beta-mediated cell responses, and its function remains unknown. Binding data on confluent monolayers of rat skeletal myoblasts of the L6 cell line reveals two novel patterns of TGF-beta 1 binding. Saturation of the type I receptor with native TGF-beta 2 induces a 7-fold increase in binding of radiolabeled TGF-beta 1 at the type II protein. No induction of type II receptor binding was observed on subconfluent cells indicating a density-dependent phenomenon. The data suggest that the type I and type II proteins may interact during ligand binding in a manner which may be indicative of a regulatory role that is activated by the phase of cell growth or differentiation. A second observation is the binding of TGF-beta to a glycoprotein of 180 kDa and referred to here as the "type VI" binding protein. This protein is not related to previously described TGF-beta binding proteins, and its distribution appears universal among cell types. The level of TGF-beta 1 binding to this protein is dependent on the presence of TGF-beta 2. It is not known whether this protein transmits biological information or whether it serves as an accessory protein of a TGF-beta receptor complex.
    [Abstract] [Full Text] [Related] [New Search]