These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis and aqueous solution properties of sterically stabilized pH-responsive polyampholyte microgels.
    Author: Tan BH, Ravi P, Tan LN, Tam KC.
    Journal: J Colloid Interface Sci; 2007 May 15; 309(2):453-63. PubMed ID: 17307196.
    Abstract:
    Emulsion copolymerization of poly(methacrylic acid) and poly(2-(diethylamino)ethyl methacrylate) (PMAA/PDEA) yielded pH-responsive polyampholyte microgels of 200-300 nm in diameter. These microgels showed enhanced hydrophilic behavior in aqueous medium at low and high pH, but formed large aggregates of approximately 2500 nm at intermediate pH. To achieve colloidal stability at intermediate pH, a second batch of microgels of identical monomer composition were synthesized, where monomethoxy-capped poly(ethylene glycol)methacrylate (PEGMA) was grafted onto the surface of these particles. Dynamic light-scattering measurements showed that the hydrodynamic radius, Rh, of sterically stabilized microgels was approximately 100 nm at intermediate pH and increased to 120 and 200 nm at pH 2 and 10, respectively. Between pH 4 and 6, these microgels possessed mobility close to zero and a negative second virial coefficient, A2, due to overall charge neutralization near the isoelectric pH. From the Rh, mobility, and A2, cross-linked MAA-DEA microgels with and without PEGMA retained their polyampholytic properties in solution. By varying the composition of MAA and DEA in the microgel, it is possible to vary the isoelectric point of the colloidal particles. These new microgels are being explored for use in the delivery of DNA and proteins.
    [Abstract] [Full Text] [Related] [New Search]