These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Application of pulsed-field gel electrophoresis to characterise and trace the prevalence of Enterobacter sakazakii in an infant formula processing facility.
    Author: Mullane NR, Whyte P, Wall PG, Quinn T, Fanning S.
    Journal: Int J Food Microbiol; 2007 May 01; 116(1):73-81. PubMed ID: 17307267.
    Abstract:
    Enterobacter sakazakii (E. sakazakii) contamination of powdered infant formula (PIF) and its processing environment was monitored between April 2005 and March 2006. The purpose of the monitoring programme was to locate points of contamination, investigate clonal persistence, and identify possible dissemination routes along the processing chain. A total of 80 E. sakazakii isolates were recovered from the manufacturing facility. The overall frequency of isolation of E. sakazakii in intermediate and final product was 2.5%, while specific locations in the processing environment were contaminated at frequencies up to 31%. All E. sakazakii isolates were characterised by pulsed-field gel electrophoresis (PFGE). XbaI macrorestriction digests yielded 19 unique pulse-types that could be grouped into 6 clusters of between 5 and 32 isolates. The formation of large clusters was consistent with the presence of a number of clones in the manufacturing environment. While the majority of isolates were of environmental origin (72.5%), no cluster was confined to one specific location and indistinguishable PFGE profiles were generated from isolates cultured from the manufacturing environment, sampling points along the processing chain and from intermediate and final product. These findings suggest that the manufacturing environment serves as a key route for sporadic contamination of PIF. These data will support the development of efficient intervention measures contributing to the reduction of E. sakazakii in the PIF processing chain.
    [Abstract] [Full Text] [Related] [New Search]