These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Using pseudo amino acid composition and binary-tree support vector machines to predict protein structural classes. Author: Zhang TL, Ding YS. Journal: Amino Acids; 2007 Nov; 33(4):623-9. PubMed ID: 17308864. Abstract: Compared with the conventional amino acid composition (AA), the pseudo amino acid composition (PseAA) as originally introduced by Chou can incorporate much more information of a protein sequence; this remarkably enhances the power to use a discrete model for predicting various attributes of a protein. In this study, based on the concept of Chou's PseAA, a 46-D (dimensional) PseAA was formulated to represent the sample of a protein and a new approach based on binary-tree support vector machines (BTSVMs) was proposed to predict the protein structural class. BTSVMs algorithm has the capability in solving the problem of unclassifiable data points in multi-class SVMs. The results by both the 10-fold cross-validation and jackknife tests demonstrate that the predictive performance using the new PseAA (46-D) is better than that of AA (20-D), which is widely used in many algorithms for protein structural class prediction. The results obtained by the new approach are quite encouraging, indicating that it can at least play a complimentary role to many of the existing methods and is a useful tool for predicting many other protein attributes as well.[Abstract] [Full Text] [Related] [New Search]