These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Microscopic annealing process and its impact on superconductivity in T'-structure electron-doped copper oxides. Author: Kang HJ, Dai P, Campbell BJ, Chupas PJ, Rosenkranz S, Lee PL, Huang Q, Li S, Komiya S, Ando Y. Journal: Nat Mater; 2007 Mar; 6(3):224-9. PubMed ID: 17310138. Abstract: High-transition-temperature superconductivity arises in copper oxides when holes or electrons are doped into the CuO(2) planes of their insulating parent compounds. Whereas hole doping quickly induces metallic behaviour and superconductivity in many cuprates, electron doping alone is insufficient in materials such as R(2)CuO(4) (R is Nd, Pr, La, Ce and so on), where it is necessary to anneal an as-grown sample in a low-oxygen environment to remove a tiny amount of oxygen in order to induce superconductivity. Here we show that the microscopic process of oxygen reduction repairs Cu deficiencies in the as-grown materials and creates oxygen vacancies in the stoichiometric CuO(2) planes, effectively reducing disorder and providing itinerant carriers for superconductivity. The resolution of this long-standing materials issue suggests that the fundamental mechanism for superconductivity is the same for electron- and hole-doped copper oxides.[Abstract] [Full Text] [Related] [New Search]