These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Primary structure and carbohydrate binding specificity of a potent anti-HIV lectin isolated from the filamentous cyanobacterium Oscillatoria agardhii. Author: Sato Y, Okuyama S, Hori K. Journal: J Biol Chem; 2007 Apr 13; 282(15):11021-9. PubMed ID: 17314091. Abstract: The primary structure of a lectin, designated Oscillatoria agardhii agglutinin (OAA), isolated from the freshwater cyanobacterium O. agardhii NIES-204 was determined by the combination of Edman degradation and electron spray ionization-mass spectrometry. OAA is a polypeptide (Mr 13,925) consisting of two tandem repeats. Interestingly, each repeat sequence of OAA showed a high degree of similarity to those of a myxobacterium, Myxococcus xanthus hemagglutinin, and a marine red alga Eucheuma serra lectin. A systematic binding assay with pyridylaminated oligosaccharides revealed that OAA exclusively binds to high mannose (HM)-type N-glycans but not to other N-glycans, including complex types, hybrid types, and the pentasaccharide core or oligosaccharides from glycolipids. OAA did not interact with any of free mono- and oligomannoses that are constituents of the branched oligomannosides. These results suggest that the core disaccharide, GlcNAc-GlcNAc, is also essential for binding to OAA. The binding activity of OAA to HM type N-glycans was dramatically decreased when alpha1-2 Man was attached to alpha1-3 Man branched from the alpha1-6 Man of the pentasaccharide core. This specificity of OAA for HM-type oligosaccharides is distinct from other HM-binding lectins. Kinetic analysis with an HM heptasaccharide revealed that OAA possesses two carbohydrate binding sites per molecule, with an association constant of 2.41x10(8) m-1. Furthermore, OAA potently inhibits human immunodeficiency virus replication in MT-4 cells (EC50=44.5 nm). Thus, we have found a novel lectin family sharing similar structure and carbohydrate binding specificity among bacteria, cyanobacteria, and marine algae.[Abstract] [Full Text] [Related] [New Search]