These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ca2+ entry-independent effects of L-type Ca2+ channel modulators on Ca2+ sparks in ventricular myocytes.
    Author: Copello JA, Zima AV, Diaz-Sylvester PL, Fill M, Blatter LA.
    Journal: Am J Physiol Cell Physiol; 2007 Jun; 292(6):C2129-40. PubMed ID: 17314267.
    Abstract:
    During the cardiac action potential, Ca(2+) entry through dyhidropyridine receptor L-type Ca(2+) channels (DHPRs) activates ryanodine receptors (RyRs) Ca(2+)-release channels, resulting in massive Ca(2+) mobilization from the sarcoplasmic reticulum (SR). This global Ca(2+) release arises from spatiotemporal summation of many localized elementary Ca(2+)-release events, Ca(2+) sparks. We tested whether DHPRs modulate Ca(2+)sparks in a Ca(2+) entry-independent manner. Negative modulation by DHPR of RyRs via physical interactions is accepted in resting skeletal muscle but remains controversial in the heart. Ca(2+) sparks were studied in cat cardiac myocytes permeabilized with saponin or internally perfused via a patch pipette. Bathing and pipette solutions contained low Ca(2+) (100 nM). Under these conditions, Ca(2+) sparks were detected with a stable frequency of 3-5 sparks.s(-1).100 microm(-1). The DHPR blockers nifedipine, nimodipine, FS-2, and calciseptine decreased spark frequency, whereas the DHPR agonists Bay-K8644 and FPL-64176 increased it. None of these agents altered the spatiotemporal characteristics of Ca(2+) sparks. The DHPR modulators were also without effect on SR Ca(2+) load (caffeine-induced Ca(2+) transients) or sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) activity (Ca(2+) loading rates of isolated SR microsomes) and did not change cardiac RyR channel gating (planar lipid bilayer experiments). In summary, DHPR modulators affected spark frequency in the absence of DHPR-mediated Ca(2+) entry. This action could not be attributed to a direct action of DHPR modulators on SERCA or RyRs. Our results suggest that the activity of RyR Ca(2+)-release units in ventricular myocytes is modulated by Ca(2+) entry-independent conformational changes in neighboring DHPRs.
    [Abstract] [Full Text] [Related] [New Search]