These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Probing the regulatory site of Escherichia coli aspartate transcarbamoylase by site-specific mutagenesis.
    Author: Zhang Y, Kantrowitz ER.
    Journal: Biochemistry; 1992 Jan 28; 31(3):792-8. PubMed ID: 1731936.
    Abstract:
    The effector binding site of Escherichia coli aspartate transcarbamoylase, composed of the triphosphate and ribose-base subsites, is located on the regulatory (r) chains of the enzyme. In order to probe the function of amino acid side chains at this nucleotide triphosphate site, site-specific mutagenesis was used to create three mutant versions of the enzyme. On the basis of the three-dimensional structure of the enzyme with CTP bound, three residues were selected. Specifically, Arg-96r was replaced with Gln, and His-20r and Tyr-89r were both replaced with Ala. Analyses of these mutant enzymes indicate that none of these substitutions significantly alter the catalytic properties of the enzyme. However, the mutations at His-20r and Tyr-89r produced altered response to the regulatory nucleotides. For the His-20r----Ala enzyme, the affinities of the enzyme for ATP and CTP are reduced 40-fold and 10-fold, respectively, when compared with the wild-type enzyme. Furthermore, CTP is able to inhibit the His-20r----Ala enzyme 40% more than the wild-type enzyme. In the case of the Tyr-89r----Ala enzyme. ATP can increase the mutant enzyme's activity 181% compared to 157% for the wild-type enzyme, while simultaneously the affinity of this enzyme for ATP decreases about 70%. These results suggest that Tyr-89r does have an indirect role in the discrimination between ATP and CTP. The His-20r----Ala enzyme shows no UTP synergistic inhibition in the presence of CTP.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]