These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Human agonistic antibody to tumor necrosis factor-related apoptosis-inducing ligand receptor 2 induces cytotoxicity and apoptosis in prostate cancer and bladder cancer cells.
    Author: Shimada O, Wu X, Jin X, Nouh MA, Fiscella M, Albert V, Matsuda T, Kakehi Y.
    Journal: Urology; 2007 Feb; 69(2):395-401. PubMed ID: 17320696.
    Abstract:
    OBJECTIVES: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in a variety of tumor cells through two of its receptors: TRAIL-R1 and TRAIL-R2. In this study, we investigated the susceptibility of human prostate cancer and bladder cancer cells to HGS-ETR2, a human monoclonal agonistic antibody specific for TRAIL-R2. METHODS: The cell surface expression of TRAIL-R1 and TRAIL-R2 on prostate cancer and bladder cancer cells was determined using flow cytometry. Cytotoxicity was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and caspase activities were measured by a quantitative colorimetric assay. RESULTS: HGS-ETR2 effectively induced apoptotic cell death in DU145, PC3, and LNCaP human prostate cancer cells and J82 and T24 human bladder cancer cells. The increased effectiveness of HGS-ETR2 for inducing cell death might have been affected by differences in the cell surface expression of the two TRAIL receptors, in that TRAIL-R2, but not TRAIL-R1, was frequently expressed in the prostate cancer and bladder cancer cells. HGS-ETR2 significantly activated the caspase cascade, including caspase-3, -6, -8, and -9, which were the downstream molecules of the death receptors in prostate cancer cells. Caspase-3, -6, and -9 were also significantly activated with HGS-ETR2-induced apoptosis in the bladder cancer cells. CONCLUSIONS: These findings suggest the potential utility of TRAIL-R2 antibody as a novel therapeutic agent against prostate cancer and bladder cancer.
    [Abstract] [Full Text] [Related] [New Search]