These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Thin film processing using S-layer proteins: biotemplated assembly of colloidal gold etch masks for fabrication of silicon nanopillar arrays.
    Author: Mark SS, Bergkvist M, Bhatnagar P, Welch C, Goodyear AL, Yang X, Angert ER, Batt CA.
    Journal: Colloids Surf B Biointerfaces; 2007 Jun 15; 57(2):161-73. PubMed ID: 17324560.
    Abstract:
    We explored the bionanofabrication of silicon nanopillar structures using ordered gold nanoparticle arrays generated from microbial surface layer (S-layer) protein templates. The S-layer template used for these thin film processing experiments was isolated from the Gram-positive bacterium Deinococcus radiodurans. In this preliminary work, S-layers preimmobilized onto chemically modified silicon substrates were initially used to template the fabrication of a nanolithographic hard mask pattern comprised of a hexagonally ordered array of 5-nm gold nanoparticles (lattice constant=18 nm). Significantly, the use of the biotemplated gold nanoparticle mask patterns in an inductively coupled plasma (ICP) etching process successfully yielded silicon nanopillar structures. However, it was found that the resultant nanopillars (8-13 nm wide at the tip, 15-20 nm wide at half-height, 20-30 nm wide at the base, and 60-90 nm tall) appeared to lack any significant degree of translational ordering. The results suggest that further studies are needed in order to elucidate the optimal plasma processing parameters that will lead to the generation of long-range ordered arrays of silicon-based nanostructures using S-layer protein templates.
    [Abstract] [Full Text] [Related] [New Search]